3/23/2020 UNIT 1

Biology Chemistry Computer Engineering Electronics Mathematics Physics Science Home

UNIT 1: METABOLIC PROCESSES

F. Photosynthesis and Cellular Respiration

- photosynthesis and respiration both take place in the same cell for autotrophs, whereas heterotrophs only undergo respiration
- Calvin cycle processes and C₄ and CAM processes are similar to reactions in cellular respiration, only they are in reverse
- electron transport chains are found in both systems, and the proteins, quinines and cytochromes are similar in structure and, in some cases, are exactly the same
- both photosynthesis and respiration use chemiosmosis to transform energy from one form to another
- in mitochondria, H⁺ ions are pumped from the matrix into the intermebrane space, with ATP synthesis occurring in the matrix
- in chloroplasts, H⁺ ions are pumped from the stroma into the thylakoid lumen, with ATP synthesis occurring in the stroma
- Figure 2, p. 180 illustrates chemiosmosis in both processes
- the following Table summarizes the comparisons between photosynthesis and respiration:

Comparison	Respiration	Photosynthesis
1. Overall Reaction	•	•
a. reactants	 organic molecules (e.g. glucose) 	• CO ₂ + H ₂ O
b. products	• CO ₂ + H ₂ O	organic molecules
c. energy	Released	stored
2. Electrons	1	Î
a. source	 organic molecules (e.g. glucose) 	Water
b. carrier(s)	• NAD+, FAD+	• NAUP*
S. Electron Transport System a. energy profile		
	Energy	Energy
	time	time
b. electron source	 NADH and FADH₂ 	• water
c. electron sink	oxygen	• NADPH
d. products	• ATP	ATP and NADPH
4. ATP Synthesis and Organe	lle	
Structure and Function		
a. location of ETC		the field of the control of
h Litian recomising and the	inter membrane (cristae)	thylakoid membrane
 b. H⁺ ion reservoir and the pumping action of the ior by the ETC 	 pumped out of the matrix and into the inner membrane space 	 pumped into the out of the stroma and into the thylakoid lumen
c. membrane embedded ATPase and the synthes	·	

3/23/2020 UNIT 1

ATPase is oriented such that the H⁺ ions move from the outside in and ATP is made on the matrix side
 ATPase is oriented such that the H⁺ ions move from the inside out and ATP is made on the stroma side

Homework: 1-5, p. 182