Lab: Confirm that Newton's Law of Universal Gravitation is an inverse square law

Given:	the	fol	lowing	data
--------	-----	-----	--------	------

Average Earth - Moon Distance (m)	Radius of Moon (m)	Radius of Earth (m)	Mass of Earth (kg)	Mass of Moon (kg)	Mass of Sun (kg)	Average Earth -Sun Distance (m)	Radius of the Sun (m)
3.84 x 10 °	1.74 x 10 ⁶	6.38 x 10 ⁶	5.98 x 10 ²⁴	7.35 x 10 ²²	1.99 X 10 30	1.496 x 10 ¹¹	6.96 x 10 ⁸

Task: use graphical techniques to confirm that Newton's Law of Universal Gravitation is an inverse square law.

Solution:

Note: The center-to-center distance between the Moon and the Earth is the distance between the two celestial bodies plus their respective radii. i.e.

Gathering and Compiling additional Information:

For The Moon -Earth System

 $R_1 = 1.74 \times 10^6 \text{ m} + 6.38 \times 10^6 \text{ m} + 3.84 \times 10^6 \text{ m} = 1.196 \times 10^7 \text{ m}$

For the Sun -Earth System

 R_2 = 1.496 x 10¹¹ m + 6.38 x 10⁶ m + 6.96 x 10⁸ m = 1.50 x 10¹¹ m

Procedure:

Use the Equation for the Law of Universal Gravitation

- 1. Find the forces for Moon -Earth System $F_1 = 2.05 \times 10^{23} N$
- 2. Find the forces for the Sun -Earth System $F_{2\,{\scriptscriptstyle \pm}} 3.53 \times 10^{22}\,N$
- 3. Compile the data in a chart and Plot the data on a graph

System	Forces (N)	Distances (R) (m)	Distances-squared $(R)^2$, (m^2)	Product of Masses (kg ²)
Earth-Moon	2.05 x 10 ³⁷	1.196 x 10 ⁷	1.430 x 10 14	4.57 x 1047

Earth-Sun	3.53 x 10 ²²	1.50 x 10 11	2.25 x 10 22	1.19 x 1055

Here is the same data and its analysis using spreadsheets

System	Forces (N)	Distances (R) (m)	^S Distances- squared (R) ² , (m ²)	Product of Masses (kg ²)	Inverse Distances- squared $(1/R)^2$, $(1/m^2)$
Earth-Moon	2.05E+37	71.20E+07	71.43E+14	4.57E+47	6.99E-15
Earth-Sun	3.53E+22	21.50E+1	12.25E+22	1.19E+55	4.44E-23

This shows that in the relationship F α 1/R²,Force is inversely proportional to the distance squared

To confirm the inverse square relationship we can plot $F\,vs.\,1/R^{\scriptscriptstyle 2}$

Note: F vs. 1/R² gives us a linear relationship.

Conclusion: the Law of Universal Gravitation is a an inverse square law