Lab: Confirm that Newton's Law of Universal Gravitation is an inverse square law

Given: the following data

Average Earth - Moon Distance (m)	Radius of Moon (m)	Radius of Earth (m)	Mass of Earth (kg)	Mass of Moon (kg)	Mass of Sun (kg)	Average Earth -Sun Distance (m)	Radius of the Sun (m)
3.84×10^{6}	1.74×10^{6}	6.38×10^{6}	5.98×10^{24}	7.35×10^{22}	1.99×10^{30}	$1.496 \times$ 10^{11}	6.96×10^{8}

Task: use graphical techniques to confirm that Newton's Law of Universal Gravitation is an inverse square law.

Solution:

Note: The center-to-center distance between the Moon and the Earth is the distance between the two celestial bodies plus their respective radii. i.e.

Gathering and Compiling additional Information:
For The Moon -Earth System
$\mathrm{R}_{1}=1.74 \times 10^{6} \mathrm{~m}+6.38 \times 10^{6} \mathrm{~m}+3.84 \times 10^{6} \mathrm{~m}=1.196 \times 10^{7} \mathrm{~m}$
For the Sun -Earth System
$R_{2}=1.496 \times 10^{11} \mathrm{~m}+6.38 \times 10^{6} \mathrm{~m}+6.96 \times 10^{8} \mathrm{~m}=1.50 \times 10^{11} \mathrm{~m}$

Procedure:

Use the Equation for the Law of Universal Gravitation

1. Find the forces for Moon -Earth System

$$
F_{1}=2.05 \times 10^{23} \mathrm{~N}
$$

2. Find the forces for the Sun -Earth System $F_{2}=3.53 \times 10^{22} \mathrm{~N}$
3. Compile the data in a chart and Plot the data on a graph

System	Forces (N)	Distances (R) (m)	Distances-squared $(\mathrm{R})^{2},\left(\mathrm{~m}^{2}\right)$	Product of Masses $\left(\mathrm{kg}^{2}\right)$
Earth-Moon	2.05×10^{37}	1.196×10^{7}	1.430×10^{14}	4.57×10^{47}

Earth-Sun	3.53×10^{22}	1.50×10^{11}	2.25×10^{22}	1.19×10^{55}

Here is the same data and its analysis using spreadsheets

System	Forces	Distances Distances- (R) squared $(\mathrm{R})^{2},\left(\mathrm{~m}^{2}\right)$	Distancessquared (R) ${ }^{2}$, (m)	Product of Masses (kg^{2})	Inverse Distancessquared $(1 / R)^{2}$, (1/m²)
Earth-Moon 2.05E+371.20E+071.43E+14				4.57E	$6.99 \mathrm{E}-15$
Earth-Sun	3.53 E	50	$2.25 \mathrm{E}+22$	1.19 E	$4.44 \mathrm{E}-23$

This shows that in the relationship F a $\underset{\text { 1/R2, }}{\text { s }}$, Force is inversely proportional to the distance squared

To confirm the inverse square relationship we can plot F vs. $1 / \mathrm{R}^{2}$

Note: F vs. 1/R² gives us a linear relationship.

Conclusion: the Law of Universal Gravitation is a an inverse square law

